\qquad
Show all work neatly. EXACT answers unless specified.
(1) Given the vectors $u=2 i+2 j$ and $v=-4 i+3 j$, find the following:
a) $\|u\|=\sqrt{2^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}$

$$
2 \sqrt{2}
$$

b) $3 u+v \quad\langle 6,6\rangle+\langle-4,3\rangle$

$$
\langle 2,9\rangle
$$

c) $u \cdot v \quad 2(-4)+2(3)$
d) The angle between \mathbf{u} and \mathbf{v}

$$
\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \overrightarrow{\vec{v}} \|}=\frac{-2}{2^{\sqrt{2}(5)}}=\frac{-1}{5 \sqrt{2}}
$$

e) The direction angle of v (exact)

$$
\tan \theta=\frac{-3}{4} \ln \Phi 2
$$

f) Find a value for b such that $\langle b, 2\rangle$ is orthogonal to v \qquad

$$
\operatorname{cus}^{-1}\left(-\frac{1}{5 \sqrt{2}}\right) \approx 98^{\circ}
$$

Find a
g) Find a unit vector in the direction of v

$$
\left\langle-\frac{4}{5}, \frac{3}{5}\right\rangle
$$

$$
\tan ^{-1}\left(-\frac{3}{4}\right)+1800^{\circ} \times 143.1^{\circ}
$$

$$
\langle b, 2\rangle \cdot\langle-4,3\rangle=0
$$

$$
-4 b+6=0
$$

$$
\frac{1}{\|\vec{v}\|} \stackrel{\rightharpoonup}{V}
$$

\qquad
h) If $P Q$ is a representative of v where $P=(3,-1)$, find the coordinates of point Q. $(-1,2)$ Let $D=\left(x_{1}, x_{2}\right)$ then $\overrightarrow{P P}=\left\langle x_{1}-3,+x_{2}-1\right\rangle=\langle-4,3\rangle \Rightarrow \begin{gathered}x_{1}-3=-4 \\ x_{1}=-1\end{gathered}$ $x_{2}=2$
(2) Two forces act on an object as shown. Find the magnitude and the direction of the resultant.

(10 pts)

$$
\begin{aligned}
& \quad \vec{R}=\overrightarrow{\vec{F}},+\vec{F}_{2}=\left\langle\frac{-7 \sqrt{3}}{2},-\frac{13}{2}\right\rangle \\
& \|\vec{R}\|=\sqrt{\left(-\frac{7 \sqrt{3}}{2}\right)^{2}+\left(\frac{-12}{2}\right)^{2}}=\sqrt{19} \approx 8.9 \operatorname{lns} \\
& \tan \theta=\frac{-13 / 2}{-7 \sqrt{3} / 2}=\frac{13}{7 \sqrt{3}} \text { in } 03 \quad \theta=\tan ^{-1}\left(\frac{13}{7 \sqrt{3}}\right)+180^{\circ} \approx 227^{\circ}
\end{aligned}
$$

(3) An airplane is traveling at a constant airspeed of 450 mph in the direction $\mathrm{N} 60^{\circ} \mathrm{W}$. If wind is blowing directly eastward at a rate of 50 mph , what is the actual speed and direction of the airplane?

$$
\begin{aligned}
& \vec{p}=\left\langle 450 \cos 150^{\circ}, 4505 \mathrm{~m} \mid 50\right\rangle=\langle-225 \sqrt{3}, 225\rangle \\
& \vec{W}=\langle 50,0\rangle \\
& \vec{R}=\vec{p}+\vec{w}=\langle 50-225 \sqrt{3}, 225\rangle \\
& \|\vec{R}\|=\sqrt{(50-225 \sqrt{3})^{2}+(225)^{2}} \approx 407 \mathrm{mph} \quad \tan \theta=\frac{225}{50-25 \sqrt{3}} \operatorname{in} \phi=180^{\circ}
\end{aligned}
$$

(4) On the axes below, plot (and label) the polar points $A\left(2,150^{\circ}\right), B(3,-\pi / 6), C(-2, \pi / 2)$ (3pts)

(5) Given the vectors w and v below, find $w+v$ and $-2 v$.

w

(6) Given the point (5, $7 \pi / 4$) in polar coordinates, find the rectangular representation.

$$
\begin{aligned}
& x=r \cos 0=5 \cos \frac{7 \pi}{4} \\
& y=r \sin e=5 \sin \frac{7 \pi}{4}
\end{aligned} \quad\left(\begin{array}{cc}
5 \sqrt{2} \\
2 & \left.-\frac{5 \sqrt{2}}{2}\right) .
\end{array}\right.
$$

(7) Given the point $(-1, \sqrt{3})$ in rectangular coordinates, find two different polar representations;

$$
\begin{array}{ll}
\text { one with } r>0, \text { the other with } r<0 \\
r^{2}=(-1)^{2}+\sqrt{3}^{2}=4 & \tan \theta=-\sqrt{3} \\
r= \pm 2 & \left(2, \frac{2 \pi}{3}\right)
\end{array}
$$

(8) Convert to rectangular coordinates: $r=\cos \theta+\sin \theta$ mut. br

$$
\begin{aligned}
r^{2} & =r \cos \theta+r \sin \theta \\
x^{2}+y^{2} & =x+y
\end{aligned}
$$

(9) Graph the polar curve: $r=4 \sin 2 \theta$. (You may use either grid)

(10) Graph the polar curve: $r=1+4 \sin \theta$. (You may use either grid)

$$
\begin{aligned}
& r=4 \sin 2 \theta \Rightarrow \text { Rose } 4 \text { petals } \\
& \text { spacing } \frac{2 \pi}{2 \pi}=\frac{\pi}{2}
\end{aligned}
$$

tip when $r=44-4 \sin 2 \theta$ $\sin 2 \theta=1$ $2 \theta=\frac{\pi}{2}$ $\theta=\pi / 2$

$$
\begin{aligned}
& r=0 \\
& \begin{array}{l}
1+4 \sin \theta=0 \\
\sin \theta=-\frac{1}{4}
\end{array} \overbrace{\substack{\pi+\sin ^{-1} \frac{1}{4} \\
3.4}}^{2 \pi-\sin ^{-1}\left(-\frac{1}{4}\right.} .
\end{aligned}
$$

(11) Find all remaining parts of the following triangles) $c=4, B=60^{\circ}, A=70^{\circ}$, and find the area. Approx. accurately (ie. used "stored values")to one decimal place.

Area
$\frac{1}{2} b c \sin A$
$\frac{1}{2} b \cdot 4 \sin 70^{\circ}$

$$
\frac{b}{\sin 60^{\circ}}=\frac{4}{\sin 50^{\circ}} \quad \frac{a}{\sin 70^{\circ}}=\frac{4}{\sin 50^{\circ}}
$$

$2 b \sin 70^{\circ}$

$$
b=\frac{4 \sin 60^{\circ}}{\sin 50^{\circ}}=\frac{2 \sqrt{3}}{\sin 50^{\circ}} \approx 4.5
$$

$$
a=\frac{4 \sin 70^{\circ}}{\sin 50^{\circ}} \approx 4.9
$$

(12) Find all remaining parts of the given triangles), exactly.

$$
\begin{aligned}
& C_{1}=60^{\circ} \\
& B_{1}=90^{\circ} \\
& \frac{\sin B}{b}=\frac{\sin 30^{\circ}}{6} \\
& b_{1}=\frac{6 \sin B_{1}}{\sin 30^{\circ}}=12 \sin B_{1}=12
\end{aligned}
$$

$$
\begin{gathered}
\frac{\sin B}{b}=\frac{\frac{\sin 30^{\circ}}{6}=\frac{\sin C^{\prime}}{6 \sqrt{3}}}{} \begin{array}{c}
\sin C=\frac{6 \sqrt{3} \sin 30^{\circ}}{6}=\frac{\sqrt{3}}{2} \\
C=60^{\circ}, 120^{\circ} \text { Two Tr antis } \\
C_{2}=120^{\circ} \\
B_{2}=30^{\circ} \\
b_{2}=12 \sin B_{2}=12 \cdot \frac{1}{2}=6
\end{array}
\end{gathered}
$$

This topic was on
(13) Evaluate each of the following exactly $<$ the last test, not
(a) $\cos \left(\tan ^{-1}(1 / 4)\right)=$ $4 / \sqrt{17}$

$$
\begin{aligned}
& \theta=\tan ^{-1} \frac{1}{4} \\
& \tan \theta=\frac{1}{4}, Q 1 \\
& \cos \theta=\frac{4}{\sqrt{17}}
\end{aligned}
$$

$$
\begin{aligned}
& \theta=\cos ^{-1}(-3 / 4) \\
& \cos \theta=-3 / 4, \operatorname{p} 2
\end{aligned}
$$

$$
\sqrt{7} \sqrt{4}
$$

$$
\tan \theta=-\frac{\sqrt{7}}{3}
$$

(14)

The Colonel spots a campfire at a of bearing $N 42^{\circ} \mathrm{E}$ from his current position. Sarge, who is positoned 3000 feet due east of the Colonel, reckons the bearing to the fire to be $\mathrm{N} 20^{\circ} \mathrm{W}$ from his current position. Determine the distance from the campfire to each man, rounded to the nearest foot.

$$
\frac{a}{\sin 70^{\circ}}=\frac{b}{\sin 48^{\circ}}=\frac{3000}{\sin 62^{\circ}}
$$

$$
\begin{array}{ll}
a=\frac{3000 \sin 70^{\circ}}{\sin 62^{\circ}} & b=\frac{3000 \sin 48}{\sin 62^{\circ}} \\
a^{\circ} \approx 3193 \mathrm{ft} & b \approx 2525 \mathrm{ft}
\end{array}
$$

(15)

Time Lost to a Navigation Error In attempting to fly from city P to city Q. an aircraft followed a course that was 10° in error, as indicated in the figure. After flying a distance of 50 miles, the pilot corrected the course by turning at point R and flying 300 miles farther. If the constant speed of the aircraft was 250 miles per hour, how much time was lost due to the error?

$$
\begin{aligned}
& \frac{d}{\sin R}= \frac{300}{\sin 10^{\circ}}=\frac{50}{\sin Q} \\
& 300 \sin Q=50 \sin 10^{\circ} \\
& \sin Q=\frac{50 \sin 10^{\circ}}{300} \Rightarrow \text { must best } \\
& \text { ing } 6 \\
& \approx=\sin ^{-1}\left(\frac{50 \sin 10^{-}}{300}\right)^{2}
\end{aligned}
$$

(A)

$$
\begin{equation*}
R=180^{\circ}-10^{\circ}-(A) \approx 168.3^{\circ} \tag{B}
\end{equation*}
$$

On correct path,

$$
\begin{equation*}
\left.d^{2}=5 b^{2}+300^{2}-2(50) 600\right) 405 \tag{c}
\end{equation*}
$$

$$
d=\frac{300 \sin R}{\sin 10^{\circ}} \approx 349.1
$$

$$
t=\frac{d s t}{d t e}=\frac{d}{250} \approx 1.396 \mathrm{hr} .
$$

On path taken

$$
t=\frac{d}{r}=\frac{350}{250}=1.4 \mathrm{hm}
$$

$$
\text { H took } \approx 0.0035 \mathrm{hB} \text { more }=0.0035 \mathrm{hRs} \cdot \frac{60 \mathrm{~min}}{\mathrm{hr}}
$$

$$
\approx .21 \mathrm{~min} \approx 12.7 \mathrm{sec} \text { onds }
$$

